说三道四技术文摘-感悟人生的经典句子
说三道四 > 文档快照

Pinterest谈实战经验:如何在两年内实现零到数百亿的月访问

HTML文档下载 WORD文档下载 PDF文档下载
在一个名为 《Scaling Pinterest》 的主题演讲上,Pinterest的Yashwanth Nelapati和 Marty Weiner为我们讲述了Pinterest如何在两年内实现零到数百亿的月访问。文中不乏决策的选择,以及每个阶段Pinterest的状况。

Pinterest一直保持着指数增长,每一个半月都会翻一翻。在两年内,他们实现了从0到数百亿的月PV;从开始的两个创始人加一个工程师增长到现在超过40个工程师,从一个小型的MySQL服务器增长到180个Web Enigne、240个API Enigne、88个MySQL DB(cc2.8xlarge,每个DB都会配置一个奴节点)、110个Redis Instance以及200个Mmecache Instance。

在一个名为 《Scaling Pinterest》 的主题演讲上,Pinterest的Yashwanth Nelapati和 Marty Weiner为我们讲述了这个戏剧性的过程。当然扩展到当下规模,Pinterest在众多选择中不可避免的走了许多的弯路,而Todd Hoff认为其中最宝贵的经验该归结于以下两点:

  1. 如果你的架构应对增长所带来的问题时,只需要简单的投入更多的主机,那么你的架构含金量十足。
  2. 当你把事物用至极限时,这些技术都会以各自不同的方式发生故障,这导致他们对工具的选择有着特殊的偏好:成熟、简单、优秀、知名、被更多的用户喜爱、更好的支持、稳定且杰出的表现、通常情况下无故障以及免费。使用这些标准,他们选择了MySQL、Solr、Memcache、Redis、Cassandra,同时还抛弃了MongoDB。

同样这两个点是有关联的,符合第二个原则的工具就可以通过投入更多的主机进行扩展。即使负载的增加,项目也不会出现很多故障。即使真的出现难以解决的问题,至少有一个社区去寻找问题解决的方案。一旦你选择过于复杂和挑剔的工具,在扩展的道路上将充满荆棘。

需要注意的是所有他们选择的工具都依靠增加分片来进行扩展,而非通过集群。讲话中还阐述了为什么分片优于集群以及如何进行分片,这些想法可能是之前你闻所未闻的。

下面就看一下Pinterest扩展的阶段性时间轴:

项目背景

  • Pins是由其它零零碎碎信息集合成的图片,显示了对客户重要的信息,并且链接到它所在的位置。
  • Pinterest是一个社交网络,你可以follow(关注)其它人以及board。
  • 数据库:Pinterest的用户拥有board,而每个board都包含pin;follow及repin人际关系、验证信息。

1. 2010年3月发布——寻找真我的时代

在那时候,你甚至不知道需要建立一个什么样的产品。你有想法,所以你快速的迭代以及演变。而最终你将得到一些很小的MySQL查询,而这些查询在现实生活中你从未进行过。

Pinterest初期阶段的一些数字:

  • 2个创始人
  • 1个工程师
  • Rackspace
  • 1个小的网络引擎
  • 1个小的MySQL数据库
  • 2011年11月

仍然是小规模,产品通过用户反馈进行演变后的数字是:

  • Amazon EC2 + S3 + CloudFront
  • 1 NGinX, 4 Web Engines (用于冗余,不全是负载)
  • 1 MySQL DB + 1 Read Slave (用于主节点故障情况)
  • 1 Task Queue + 2 Task Processors
  • 1 MongoDB (用于计数)
  • 2 Engineers

2. 贯穿2011年——实验的时代

迈上疯狂增长的脚步,基本上每1个半月翻一翻。

  • 当你增长的如此之快,每一天每一星期你可能都需要打破或者抛弃一些东西。
  • 在这个时候,他们阅读大量的论文,这些论文都阐述着只需要添加一台主机问题就会得以解决。他们着手添加许多技术,随后又不得不放弃。
  • 于是出现了一些很奇怪的结果

  • Amazon EC2 + S3 + CloudFront
  • 2NGinX, 16 Web Engines + 2 API Engines
  • 5 Functionally Sharged MySQL DB + 9 read slaves
  • 4 Cassandra Nodes
  • 15 Membase Nodes (3 separate clusters)
  • 8 Memcache Nodes
  • 10 Redis Nodes
  • 3 Task Routers + 4 Task Processors
  • 4 Elastic Search Nodes
  • 3 Mongo Clusters
  • 3个工程师
  • 5个主数据库技术,只为了独立其中的数据。
  • 增长太快以至于MySQL疲于奔命,所有其它的技术也达到了极限。
  • 当你把事物用至极限时,这些技术都会以各自不同的方式出错。
  • 开始抛弃一些技术,并且自我反省究竟需要些什么,基本上重做了所有的架构。

3. 2012年2月——成熟的时代

  • 在重做了所有的架构后,系统呈现了如下状态
  • Amazon EC2 + S3 + Akamai, ELB
  • 90 Web Engines + 50 API Engines
  • 66 MySQL DBs (m1.xlarge) +,每个数据库都配备了奴节点
  • 59 Redis Instances
  • 51 Memcache Instances
  • 1 Redis Task Manager + 25 Task Processors
  • Sharded Solr
  • 6个工程师
  • 现在采用的技术是被分片的MySQL、Redis、Memcache和Solr,有点在于这些技术都很简单很成熟。
  • 网络传输增长仍然保持着以往的速度,而iPhone传输开始走高。

4. 2012年10月12日 —— 收获的季节

大约是1月份的4倍

  • 现在的数据是:

  • Amazon EC2 + S3 + Edge Cast,Akamai, Level 3
  • 180 Web Engines + 240 API Engines
  • 88 MySQL DBs (cc2.8xlarge) ,同样每个数据库都有一个奴节点
  • 110 Redis Instances
  • 200 Memcache Instances
  • 4 Redis Task Manager + 80 Task Processors
  • Sharded Solr
  • 40个工程师(仍在增长)

  • 需要注意的是,如今的架构已趋近完美,应对增长只需要投入更多的主机。
  • 当下已开始转移至SSD


下面一览该演讲中的干货,决策的制定:

为什么会选择EC2和S3

  1. 相当好的可靠性,即使数据中心发生故障。多租户会增加风险,但是也不是太坏。
  2. 良好的报告和支持。它们(EC2和S3)有着良好的架构,并且知道问题所在。
  3. 完善的周边设施,特别是在你需要快速增长时。你可以从APP Engine处获得maged cache、负载均衡、MapReduce、数据库管理以及其它你不想自己动手编写的组件,这可以加速你应用程序的部署,而在你工程师空闲时,你可以着手编写你需要的一切。
  4. 新的实例可以在几秒内就绪,这就是云的力量;特别是在只有两个工程师的初期,不需要去担心容量规划,更不需要花两个星期去建立自己的Memcache,你可以在数分钟内添加10个Memcached。
  5. 缺点:有限的选择。直到最近,才可以选择使用SSD,同时无法获得太大的内存配置。
  6. 优点:你不需要给大量的主机进行不同的配置。

为什么会选择MySQL

  1. 非常成熟。
  2. 非常稳定。不会宕机,并且不会丢失数据。
  3. 在招聘上具有优势,市场上有大把的人才。
  4. 在请求呈直线上升时,仍能将相应时间控制在一定的范围内,有些数据库技术在面对请求的飙升时表现并不是很好。
  5. 非常好的周边软件支持——XtraBackup、Innotop、Maatkit。
  6. 可以从类似Percona这样的公司得到优秀的技术支持。
  7. 开源(免费)——这一点非常重要,特别是在资金缺乏的初期

为什么使用Memcache

  • 非常成熟。
  • 非常简单。可以当成是一个socket哈希表
  • 杰出稳定的表现
  • 知名并为大量用户喜爱
  • 永不崩溃
  • 开源

为什么选择Redis

  • 虽然还不够成熟,但是非常简单及优秀
  • 提供了大量的数据结构类型
  • 提供多种的选择进行持久化和备份:你可以备份而非持久化,选择备份的话你还可以选择多久备份一次;同样你还可以选择使用什么方式进行持久化,比如MySQL等。

  • Home feed被储存在Redis上,每3个小时保存一次;然而并不是3个小时持久化一次,只是简单的每3个小时备份一次。
  • 如果你存储数据的主机发生故障,丢失的也只是备份周期内的数据。虽然不是完全可靠,但是非常简单。避免了复杂的持久化及复制,这样的架构简单且便宜。

  • 知名并为大量用户喜爱
  • 稳定且杰出的表现
  • 很少出故障。有一些专有的故障模型,你需要学会解决。这也是成熟的优势,只需要学习就可以解决。
  • 开源

Solr

  1. 只需要几分钟的安装时间,就可以投入使用
  2. 不能扩展到多于一台的机器上(最新版本并非如此)
  3. 尝试弹性搜索,但是以Pinterest的规模来说,可能会因为零碎文件和查询太多而产生问题。
  4. 选择使用Websolr,但是Pinterest拥有搜索团队,将来可能会开发自己的版本。

集群vs.分片

  • 在迅速扩展的过程中,Pinterest认识到每次负载的增加,都需要均匀的传播他们的数据。
  • 针对问题先确定解决方案的范围,他们选择的范围是集群和分片之间的一系列解决方案。

集群——所有的操作都是通过自动化

  • 比如:Cassandra、MemBase、HBase
  • 结论:没有安全感,将来可能会比较成熟,但是当下这个解决方案中还存在太多的复杂性和故障点。
  • 特性:

  • 数据自动分布
  • 节点间转移数据
  • 需要平衡分配
  • 节点间的相互通信,需要做很多措施用于防止干扰、无效传递及协商。

  • 优点:

  • 自动扩展你的数据存储,最起码论文中是这么说的。
  • 便于安装
  • 数据上的空间分布及机房共置。你可以在不同区域建立数据中心,数据库会帮你打理好一切。
  • 高有效性
  • 负载平衡
  • 不存在单点故障

  • 缺点:

  • 仍然不成熟。
  • 本质上说还很复杂。一大堆的节点必须对称协议,这一点非常难以解决。
  • 缺少社区支持。社区的讨论因为产品方向的不同而不能统一,而在每个正营中也缺乏强有力的支持。
  • 缺乏领域内资深工程师,可能大多数的工程师都还未使用过Cassandra。
  • 困难、没有安全感的机制更新。这可能是因为这些技术都使用API并且只在自己的领域内通行,这导致了复杂的升级路径。
  • 集群管理算法本身就用于处理SPOF(单点故障),如果存在漏洞的话可能就会影响到每个节点。
  • 集群管理器代码非常复杂,并且需要在所有节点上重复,这就可能存在以下的故障模式:

  • 数据平衡失控。当给集群中添加新的主机时,可能因为数据的拷贝而导致集群性能下降。那么你该做什么?这里不存在去发现问题所在的工具。没有社区可以用来求助,同样你也被困住了,这也是Pinterest回到MySQL的原因。
  • 跨节点的数据损坏。如果这里存在一个漏洞,这个漏洞可能会影响节点间的日志系统和压缩等其它组件?你的读延时增加,所有的数据都会陷入麻烦以及丢失。
  • 错误负载平衡很难被修复,这个现象十分普遍。如果你有10个节点,并且你注意到所有的负载都被堆积到一个节点上。虽然可以手动处理,但是之后系统还会将负载都加之一个节点之上。
  • 数据所有权问题,主次节点转换时的数据丢失。集群方案是非常智能的,它们会在特定的情况下完成节点权利的转换,而主次节点切换的过程中可能会导致数据的部分丢失,而丢失部分数据可能比丢失全部还糟糕,因为你不可能知道你究竟丢失了哪一部分。

分片——所有事情都是手动的

  • 结论:它是获胜者。Todd Hoff还认为他们的分片架构可能与Flickr架构类似。
  • 特性:

  • 分片可以让你摆脱集群方案中所有不想要的特性。
  • 数据需要手动的分配。
  • 数据不会移动。Pinterest永远都不会在节点间移动,尽管有些人这么做,这让他们在一定范围内站的更高。
  • 通过分割数据的方式分配负载。
  • 节点并没有互相通信,使用一些主节点控制程序的运行。
  • 优点:

  • 可以分割你的数据库以提高性能。
  • 空间分布及放置数据
  • 高有效性
  • 负载平衡
  • 放置数据的算法非常简单。主要原因是,用于处理单点故障的代码只有区区的半页,而不是一个复杂的集群管理器。并且经过短暂的测试就知道它是否能够正常工作。
  • ID生成非常简单

  • 缺点:

  • 不可以执行大多数的join。
  • 失去所有事务的能力。在一个数据库上的插入可能会成功,而在另一个上会失败。
  • 许多约束必须放到应用程序层。
  • 模式的转变需要从长计议。
  • 报告需要在所有分片上执行查询,然后需要手动的进行聚合。
  • Join在应用程序层执行。
  • 应用程序必须容忍以上所有问题。

什么时候进行分片

  1. 如果你的项目拥有PB级的数据,那么你需要立刻对其进行分片。
  2. Pin表格拥有百万行索引,索引大小已经溢出内存并被存入了磁盘。
  3. Pinterest使用了最大的表格,并将它们(这些索引)放入自己的数据库。
  4. 然后果断的超过了单数据库容量。
  5. 接着Pinterest必须进行分片。

分片的过渡

  • 过渡从一个特性的冻结开始。
  • 确认分片该达到什么样的效果——希望尽少的执行查询以及最少数量的数据库去呈现一个页面。
  • 剔除所有的MySQL join,将要做join的表格加载到一个单独的分片去做查询。
  • 添加大量的缓存,基本上每个查询都需要被缓存。
  • 这个步骤看起来像:

  • 1 DB + Foreign Keys + Joins
  • 1 DB + Denormalized + Cache
  • 1 DB + Read Slaves + Cache
  • Several functionally sharded DBs+Read Slaves+Cache
  • ID sharded DBs + Backup slaves + cache

  • 早期的只读奴节点一直都存在问题,因为存在slave lag。读任务分配给了奴节点,然而主节点并没有做任何的备份记录,这样就像一条记录丢失。之后Pinterest使用缓存解决了这个问题。
  • Pinterest拥有后台脚本,数据库使用它来做备份。检查完整性约束、引用。
  • 用户表并不进行分片。Pinterest只是使用了一个大型的数据库,并在电子邮件和用户名上做了相关的一致性约束。如果插入重复用户,会返回失败。然后他们对分片的数据库做大量的写操作。

如何进行分片

  • 可以参考Cassandra的ring模型、Membase以及Twitter的Gizzard。
  • 坚信:节点间数据传输的越少,你的架构越稳定。
  • Cassandra存在数据平衡和所有权问题,因为节点们不知道哪个节点保存了另一部分数据。Pinterest认为应用程序需要决定数据该分配到哪个节点,那么将永远不会存在问题。
  • 预计5年内的增长,并且对其进行预分片思考。
  • 初期可以建立一些虚拟分片。8个物理服务器,每个512DB。所有的数据库都装满表格。
  • 为了高有效性,他们一直都运行着多主节点冗余模式。每个主节点都会分配给一个不同的可用性区域。在故障时,该主节点上的任务会分配给其它的主节点,并且重新部署一个主节点用以代替。
  • 当数据库上的负载加重时:

  • 先着眼节点的任务交付速度,可以清楚是否有问题发生,比如:新特性,缓存等带来的问题。
  • 如果属于单纯的负载增加,Pinterest会分割数据库,并告诉应用程序该在何处寻找新的节点。
  • 在分割数据库之前,Pinterest会给这些主节点加入一些奴节点。然后置换应用程序代码以匹配新的数据库,在过渡的几分钟之内,数据会同时写入到新旧节点,过渡结束后将切断节点之间的通道。

ID结构

  • 一共64位

  • 分片ID:16位
  • Type:10位—— Board、User或者其它对象类型
  • 本地ID——余下的位数用于表中ID,使用MySQL自动递增。

  • Twitter使用一个映射表来为物理主机映射ID,这将需要备份;鉴于Pinterest使用AWS和MySQL查询,这个过程大约需要3毫秒。Pinterest并没有让这个额外的中间层参与工作,而是将位置信息构建在ID里。
  • 用户被随机分配在分片中间。
  • 每个用户的所有数据(pin、board等)都存放在同一个分片中,这将带来巨大的好处,避免了跨分片的查询可以显著的增加查询速度。
  • 每个board都与用户并列,这样board可以通过一个数据库处理。
  • 分片ID足够65536个分片使用,但是开始Pinterest只使用了4096个,这允许他们轻易的进行横向扩展。一旦用户数据库被填满,他们只需要增加额外的分片,然后让新用户写入新的分片就可以了。

查找

  • 如果存在50个查找,举个例子,他们将ID分割且并行的运行查询,那么延时将达到最高。
  • 每个应用程序都有一个配置文件,它将给物理主机映射一个分片范围。

  • “sharddb001a”: : (1, 512)
  • “sharddb001b”: : (513, 1024)——主要备份主节点

  • 如果你想查找一个ID坐落在sharddb003a上的用户:

  • 将ID进行分解
  • 在分片映射中执行查找
  • 连接分片,在数据库中搜寻类型。并使用本地ID去寻找这个用户,然后返回序列化数据。

对象和映射

  • 所有数据都是对象(pin、board、user、comment)或者映射(用户由baord,pin有like)。
  • 针对对象,每个本地ID都映射成MySQL Blob。开始时Blob使用的是JSON格式,之后会给转换成序列化的Thrift。
  • 对于映射来说,这里有一个映射表。你可以为用户读取board,ID包含了是时间戳,这样就可以体现事件的顺序。

  • 同样还存在反向映射,多表对多表,用于查询有哪些用户喜欢某个pin这样的操作
  • 模式的命名方案是:noun_verb_noun: user_likes_pins, pins_like_user。

  • 只能使用主键或者是索引查找(没有join)。
  • 数据不会向集群中那样跨数据的移动,举个例子:如果某个用户坐落在20分片上,所有他数据都会并列存储,永远不会移动。64位ID包含了分片ID,所以它不可能被移动。你可以移动物理数据到另一个数据库,但是它仍然与相同分片关联。
  • 所有的表都存放在分片上,没有特殊的分片,当然用于检测用户名冲突的巨型表除外。
  • 不需要改变模式,一个新的索引需要一个新的表。

  • 因为键对应的值是blob,所以你不需要破坏模式就可以添加字段。因为blob有不同的版本,所以应用程序将检测它的版本号并且将新记录转换成相应的格式,然后写入。所有的数据不需要立刻的做格式改变,可以在读的时候进行更新。
  • 巨大的胜利,因为改变表格需要在上面加几个小时甚至是几天的锁。如果你需要一个新的索引,你只需要建立一张新的表格,并填入内容;在不需要的时候,丢弃就好。

呈现一个用户文件界面

  1. 从URL中取得用户名,然后到单独的巨型数据库中查询用户的ID。
  2. 获取用户ID,并进行拆分
  3. 选择分片,并进入
  4. SELECT body from users WHERE id = <local_user_id>
  5. SELECT board_id FROM user_has_boards WHERE user_id=<user_id>
  6. SELECT body FROM boards WHERE id IN (<boards_ids>)
  7. SELECT pin_id FROM board_has_pins WHERE board_id=<board_id>
  8. SELECT body FROM pins WHERE id IN (pin_ids)
  9. 所有调用都在缓存中进行(Memcache或者Redis),所以在实践中并没有太多连接数据库的后端操作。

脚本相关

  1. 当你过渡到一个分片架构,你拥有两个不同的基础设施——没有进行分片的旧系统和进行分片的新系统。脚本成为了新旧系统之间数据传输的桥梁。
  2. 移动5亿的pin、16亿的follower行等。
  3. 不要轻视项目中的这一部分,Pinterest原认为只需要2个月就可以完成数据的安置,然而他们足足花了4至5个月时间,别忘了期间他们还冻结了一项特性。
  4. 应用程序必须同时对两个系统插入数据。
  5. 一旦确认所有的数据都在新系统中就位,就可以适当的增加负载来测试新后端。
  6. 建立一个脚本农场,雇佣更多的工程师去加速任务的完成。让他们做这些表格的转移工作。
  7. 设计一个Pyres副本,一个到GitHub Resque队列的Python的接口,这个队列建立在Redis之上。支持优先级和重试,使用Pyres取代Celery和RabbitMQ更是让他们受益良多。
  8. 处理中会产生大量的错误,用户可能会发现类似丢失board的错误;必须重复的运行任务,以保证在数据的处理过程中不会出现暂时性的错误。

开发相关

  • 开始尝试只给开发者开放系统的一部分——他们每个人都拥有自己的MySQL服务器等,但是事情改变的太快,以至于这个模式根本无法实行。
  • 转变成Facebook模式,每个人都可以访问所有东西,所以不得不非常小心。

未来的方向

  • 基于服务的架构

  • 当他们发现大量的数据库负载,他们开始布置大量的应用程序服务器和一些其它的服务器,所有这些服务器都连接至MySQL和Memcache。这意味着在Memcache上将存在3万的连接,这些连接将占用几个G的内存,同时还会产生大量的Memcache守护进程。
  • 为了解决这个问题,将这些工作转移到了一个服务架构。比如:使用一个follower服务,这个服务将专注处理follower查询。这将接下30台左右的主机去连接数据库和缓存,从而减少了连接的数量。
  • 对功能进行隔离,各司其职。让一个服务的开发者不能访问其它的服务,从而杜绝安全隐患。

利用Visual Basic实现无线通讯 VB利用Winsock控件实现局域网通信 VB如何从 Internet 上取回某一个网页的內容? VB如何检测是否已连接到Internet? VB如何利用Winsock控件编写自己的Internet程序 VB如何每天抓取 Internet 上某一个网页中的图片来更换桌面的壁纸 VB如何启动拨号网路中的连线? VB如何使用MSCOMM32.OCX发送大于80H的字符,可否给个示例程序? VB如何用VB打开默认浏览器或默认发信程序? VB如何用Visual Basic编写小型的网络系统 VB如何在程序中启动 NT 的【拨号连接】对话框? VB如何在网页上使用 VB5 制作的 ActiveX 控件? VB如何中断【拨号网络连接】? 设计Browser及FTP程序 -VB资料 设计Chat程序 -VB资料 设计E-mail程序 -VB资料 使用VB获得一页的HTML代码 使用VB收发电子邮件 VB使用超链接和发送Email VB使用浏览器的文件复制对话框 输入/输出篇 -VB资料 通过WnetEnumResource函数获得网络资源 -VB资料 通往 Internet 的捷径-VB资料 显示计算机的名称 -VB资料 VB用 MAPI 控件实现发送邮件 VB用 WinSock 控件下载文件 VB用 Winsock 实现聊天的程序 VB用Internet Transfer编写FTP程序 VB用Sockets发送电子邮件 用VB 创建自己的通信程序 用VB5.0开发通信软件的技巧 过节了!谨以些分献给坚守在灌水第一线的朋友们~~(二) 数据库保存图片的问题 js赋值后提交,怎么在servlet中value 为空?? SendMessage参数问题, 过节了!谨以些分献给坚守在灌水第一线的朋友们~(三) 未来的软件架构和技术 ▁▂▃▄▅学ASP一个月了,现在学SQL SERVER,散分100,只为交友!▅▄▃▂▁ 大家好 ! 中秋快乐 顺便提个问题 ? 在线等....顶也给分拉...Explorer执行了非法操作该窗口即将关闭? 过节了!谨以些分献给坚守在灌水第一线的朋友们~(四) 过节了!谨以些分献给坚守在灌水第一线的朋友们~(五) excel中数据透视表? 了解:今年高程考试有没有新增内容,因为去年就新增了CMM、C++、OA办公自动化软件开发等知识,事先也没有通知各位考生。 绝对好文---------------人力资源“总奸”的自白-------ZT 中秋检举 一个恶意网站! 用PHP上传文件到LINUX服务器,结果文件用FTP软件删不掉 有做网格控件经验的请进 请教一个数据库的小问题 各位高手帮帮我! 高手来帮忙!!! 菜鸟提问:怎样从HBITMAP获得BMP的尺寸?(SDK) 请帮忙。 请问一个关于photoshop的问题,多谢指教100分 vb excel 关于MFC多文档在何处放置自已的初始化文档的代码? 今年又是一个人过中秋,终于想找个GF了! 电影画面倒置是怎么回事? 如何将pbyte指向的byte数据传递给byte数组或char等 送分 为中秋节还工作在自己岗位上的朋友散分! 送分 cgi---這裡有多少個寫法?? 送分 gcc编译好的程序怎么运行阿? 关于多文档的问题:如何固定视窗大小? 替换字符串 初学VC的困惑——什么是标准C?? 一个小数,如何确定小数点的位数? 菜单乱码,求救! 怎样调用delphi编的DLL中的函数 关于XP操作系统中的imail 服务器的配置问题 請問有多少個寫法?????在线等待!急啊! to 思归 ,VIEWSATE的那个问题,无人回答,我贴出代码了,你看看, substring(indexA, indexB) 的官方解释不明白 请教大师两个问题 卷积是什么意思?请介绍一下这方面的资料? 用户界面与开发环境怎样脱离????? ASE 12.5.0 FOR NT安装问题。。。 没分了,但还得提这个问题? ComboBox问题? combobox问题? 4球排列,2球颜色相同,共有多少不同排法给我式子 请问,Matlab中使用正交多项式拟合的最小二乘算法用什么函数? 求“他因科研成果显著被授予博士学位”的英语翻译 中子数是示意图中的那一层? 翻译:他想和她妈妈一样,获得博士学位 交电费的存折上有个汇总压是什么意思 杨柳青青著地垂 中 著 怎么读 希望自己更( )后面加一个两个字的词语形容女孩的~ 亏加俩个相同的字,组成一个词,是什么例子:二 加 人 人 是夫人 相同的红球、白球和黄球各两个,如果颜色相同的球挨在一起排成一行,共有多少种不同的排法? 草如茵,仿写词语 民进党台北市长初选 五月天主唱阿信被田径队进行备战里约动员 刘翔红军装亮瞭望:把巩固党的执政基础作为政治责任儿子常在小区网吧过夜 其母向警方投诉广东400村官旁听贪贿案庭审 纪委书经济复苏强于预期 10月PMI创18柯文哲批民进党“乱邦” 苏贞昌:不必苗族大妈不识总书记:“怎么称呼您?”台湾花莲发生4.7级地震 民众再度心香港名医庄善春捐资120万修建华侨大16秒26 温州女生刘伊玮单手还原魔震惊!美联储开始缩减债务表了 不是加在荷同胞请留意:针对外籍人士的诈骗招疯了!房企绝望般拿地!上海周浦再出地常用湿疹偏方,湿疹康复什么时候可以停成人湿疹神经性皮炎怎么样治疗才有效果增速超越小米 乐视手机或许近期销量破狐臭怎么解决最好,遗传性狐臭的危害汇上午下跌会对市场产生怎样影响日常腋臭狐臭最好的治疗方法是什么?湿疹的治疗:湿疹严重反反复复如何应对中国人超过加拿大人,成为美国房地产最神幻僵尸重生大赢家魂道至尊武墓无上真灵热血青春的日子荡平天下与美女老师同居超强系统泡妞修仙路亡灵召唤旭景农业科技园旅游德胜广场旅游华盖路步行街旅游顺峰山旅游玉屏索道旅游送客松旅游葡京酒店旅游平遥生态植物园旅游窑洞民居旅游阿依河旅游北岐滩涂旅游
备案号:鲁ICP备13029499号-2 说三道四 www.s3d4.cn 说三道四技术文摘