说三道四技术文摘-感悟人生的经典句子
说三道四 > 文档快照

何谓机器学习 机器学习能做些什么?

HTML文档下载 WORD文档下载 PDF文档下载
利用计算机来彰显数据背后的真实含义,这才是机器学习的真实含义。它既不是只会徒然模仿的机器人,也不是具有人类感情的仿生人。

最近我和一对夫妇共进晚餐,他们问我从事什么职业,我回应道:“机器学习。”妻子回头问丈夫:“亲爱的,什么是机器学习?”她的丈夫答道:“T-800型终结者。”在《终结者》系列电影中,T-800是人工智能技术的反面样板工程。不过,这位朋友对机器学习的理解还是有所偏差的。机器学习能让我们自数据集中受到启发,换句话说,我们会利用计算机来彰显数据背后的真实含义,这才是机器学习的真实含义。它既不是只会徒然模仿的机器人,也不是具有人类感情的仿生人。

enter image description here

T-800型终结者(图片来源网络)

现今,机器学习已应用于多个领域,远超出大多数人的想象,下面就是假想的一日,其中很多场景都会碰到机器学习:假设你想起今天是某位朋友的生日,打算通过邮局给她邮寄一张生日贺卡。你打开浏览器搜索趣味卡片,搜索引擎显示了10个最相关的链接。你认为第二个链接最符合你的要求,点击了这个链接,搜索引擎将记录这次点击,并从中学习以优化下次搜索结果。然后,你检查电子邮件系统,此时垃圾邮件过滤器已经在后台自动过滤垃圾广告邮件,并将其放在垃圾箱内。接着你去商店购买这张生日卡片,并给你朋友的孩子挑选了一些尿布。结账时,收银员给了你一张1美元的优惠券,可以用于购买6罐装的啤酒。之所以你会得到这张优惠券,是因为款台收费软件基于以前的统计知识,认为买尿布的人往往也会买啤酒。然后你去邮局邮寄这张贺卡,手写识别软件识别出邮寄地址,并将贺卡发送给正确的邮车。当天你还去了贷款申请机构,查看自己是否能够申请贷款,办事员并不是直接给出结果,而是将你最近的金融活动信息输入计算机,由软件来判定你是否合格。最后,你还去了赌场想找些乐子,当你步入前门时,尾随你进来的一个家伙被突然出现的保安给拦了下来。“对不起,索普先生,我们不得不请您离开赌场。我们不欢迎老千。” 图1.1集中展示了使用到的机器学习应用。

enter image description here

图1-1 机器学习在日常生活中的应用,从左上角按照顺时针方向依次使用到的机器学习技术分别为:人脸识别、手写数字识别、垃圾邮件过滤和亚马逊公司的产品推荐

上面提到的所有场景,都有机器学习软件的存在。现在很多公司使用机器学习软件改善商业决策、提高生产率、检测疾病、预测天气,等等。随着技术指数级增长,我们不仅需要使用更好的工具解析当前的数据,而且还要为将来可能产生的数据做好充分的准备。

传感器和海量数据

虽然我们已从互联网上获取了大量的人为数据,但最近却涌现了更多的非人为数据。传感器技术并不时髦,但如何将它们接入互联网确实是新的挑战。有预测表明,20%的互联网非视频流量都将由物理传感器产生。

地震预测就是一个很好的例子,传感器收集了海量的数据,如何从这些数据中抽取出有价值的信息是一个非常值得研究的课题。1989年,洛马·普列埃塔地震袭击了北加利福尼亚州,63人死亡,3757人受伤,成千上万人无家可归;然而,相同规模的地震2010年袭击了海地,死亡人数却超过23万。洛马·普列埃塔地震后不久,一份研究报告宣称低频磁场检测可以预测地震, 但后续的研究显示,最初的研究并没有考虑诸多环境因素,因而存在着明显的缺陷。如果我们想要重做这个研究,以便更好地理解我们这个星球,寻找预测地震的方法,避免灾难性的后果,那么我们该如何入手才能更好地从事该研究呢?我们可以自己掏钱购买磁力计,然后再买一些地来安放它们,当然也可以寻求政府的帮助,让他们来处理这些事。但即便如此,我们也无法保证磁力计没有受到任何干扰,另外,我们又该如何获取磁力计的读数呢?这些都不是理想的解决方法,使用移动电话可以低成本的解决这个问题。

enter image description here

地震示意图(图片来源网络)

现今市面上销售的移动电话和智能手机均带有三轴磁力计,智能手机还有操作系统,可以运行我们编写的应用软件,十几行代码就可以让手机按照每秒上百次的频率读取磁力计的数据。此外,移动电话上已经安装了通信系统,如果可以说服人们安装运行磁力计读取软件,我们就可以记录下大量的磁力计数据,而附带的代价则是非常小的。除了磁力计,智能电话还封装了很多其他传感器,如偏航率陀螺仪、三轴加速计、温度传感器和GPS接收器,这些传感器都可以用于测量研究。

移动计算和传感器产生的海量数据意味着未来我们将面临着越来越多的数据,如何从海量数据中抽取到有价值的信息将是一个非常重要的课题。

机器学习非常重要

在过去的半个世纪里,发达国家的多数工作岗位都已从体力劳动转化为脑力劳动。过去的工作基本上都有明确的定义,类似于把物品从A处搬到B处,或者在这里打个洞,但是现在这类工作都在逐步消失。现今的情况具有很大的二义性,类似于“最大化利润”,“最小化风险”、“找到最好的市场策略”......诸如此类的任务要求都已成为常态。虽然可从互联网上获取到海量数据,但这并没有简化知识工人的工作难度。针对具体任务搞懂所有相关数据的意义所在,这正成为基本的技能要求。正如谷歌公司的首席经济学家Hal Varian所说的那样:

“我不断地告诉大家,未来十年最热门的职业是统计学家。很多人认为我是开玩笑,谁又能想到计算机工程师会是20世纪90年代最诱人的职业呢?如何解释数据、处理数据、从中抽取价值、展示和交流数据结果,在未来十年将是最重要的职业技能,甚至是大学,中学,小学的学生也必需具备的技能,因为我们每时每刻都在接触大量的免费信息,如何理解数据、从中抽取有价值的信息才是其中的关键。这里统计学家只是其中的一个关键环节,我们还需要合理的展示数据、交流和利用数据。我确实认为,能够从数据分析中领悟到有价值信息是非常重要的。职业经理人尤其需要能够合理使用和理解自己部门产生的数据。”
——McKinsey Quarterly,2009年1月


大量的经济活动都依赖于信息,我们不能在海量的数据中迷失,机器学习将有助于我们穿越数据雾霭,从中抽取出有用的信息。

Python语言的优势

基于以下三个原因,我们选择Python作为实现机器学习算法的编程语言:(1) Python的语法清晰;(2) 易于操作纯文本文件;(3) 使用广泛,存在大量的开发文档。

enter image description here

可执行伪代码

Python具有清晰的语法结构,大家也把它称作可执行伪代码(executable pseudo-code)。默认安装的Python开发环境已经附带了很多高级数据类型,如列表、元组、字典、集合、队列等,无需进一步编程就可以使用这些数据类型的操作。使用这些数据类型使得实现抽象的数学概念非常简单。此外,读者还可以使用自己熟悉的编程风格,如面向对象编程、面向过程编程、或者函数式编程。

Python语言处理和操作文本文件非常简单,非常易于处理非数值型数据。Python语言提供了丰富的正则表达式函数以及很多访问Web页面的函数库,使得从HTML中提取数据变得非常简单直观。

Python比较流行

Python语言使用广泛,代码范例也很多,便于读者快速学习和掌握。此外,在开发实际应用程序时,也可以利用丰富的模块库缩短开发周期。

在科学和金融领域,Python语言得到了广泛应用。SciPy和NumPy等许多科学函数库都实现了向量和矩阵操作,这些函数库增加了代码的可读性,学过线性代数的人都可以看懂代码的实际功能。另外,科学函数库SciPy和NumPy使用底层语言(C和Fortran)编写,提高了相关应用程序的计算性能。

Python的科学工具可以与绘图工具Matplotlib协同工作。Matplotlib可以绘制2D、3D图形,也可以处理科学研究中经常使用到的图形。

Python开发环境还提供了交互式shell环境,允许用户开发程序时查看和检测程序内容。

Python开发环境将来还会集成Pylab模块,它将NumPy、SciPy和Matplotlib合并为一个开发环境。虽然Pylab还没有并入Python环境,但是不远的将来我们肯定可以在Python开发环境找到它。

Python语言的特色

诸如MATLAB和Mathematica等高级程序语言也允许用户执行矩阵操作,MATLAB甚至还有许多内嵌的特征可以轻松地构造机器学习应用,而且MATLAB的运算速度也很快。然而MATLAB的不足之处是软件费用太高,单个软件授权就要花费数千美元。虽然也有适合MATLAB的第三方插件,但是没有一个有影响力的大型开源项目。

Java和C等强类型程序设计语言也有矩阵数学库,然而对于这些程序设计语言来说,最大的问题是即使完成简单的操作也要编写大量的代码。程序员首先需要定义变量的类型,对于Java来说,每次封装属性时还需要实现getter和setter方法。另外还要记着实现子类,即使并不想使用子类,也必须实现子类方法。为了完成一个简单的工作,我们必须花费大量时间编写了很多无用冗长的代码。Python语言则与Java和C完全不同,它清晰简练,而且易于理解,即使不是编程人员也能够理解程序的含义,而Java和C对于非编程人员则像天书一样难于理解。

所有人在小学二年级已经学会了写作,然而大多数人必须从事其他更重要的工作。
——鲍比·奈特


也许某一天,我们可以在这句话中将“写作”替代为“编写代码”,虽然有些人对于编写代码很感兴趣,但是对于大多数人来说,编程仅是完成其他任务的工具而已。Python语言是高级编程语言,我们可以花费更多的时间处理数据的内在含义,而无须花费太多精力解决计算机如何得到数据结果。Python语言使得我们很容易表达自己的目的。

Python语言的缺点

Python语言唯一的不足是性能问题。Python程序运行的效率不如Java或者C代码高,但是我们可以使用Python调用C编译的代码。这样,我们就可以同时利用C和Python的优点,逐步地开发机器学习应用程序。我们可以首先使用Python编写实验程序,如果进一步想要在产品中实现机器学习,转换成C代码也不困难。如果程序是按照模块化原则组织的,我们可以先构造可运行的Python程序,然后再逐步使用C代码替换核心代码以改进程序的性能。C++ Boost库就适合完成这个任务,其他类似于Cython和PyPy的工具也可以编写强类型的Python代码,改进一般Python程序的性能。

如果程序的算法或者思想有缺陷,则无论程序的性能如何,都无法得到正确的结果。如果解决问题的思想存在问题,那么单纯通过提高程序的运行效率,扩展用户规模都无法解决这个核心问题。从这个角度来看,Python快速实现系统的优势就更加明显了,我们可以快速地检验算法或者思想是否正确,如果需要,再进一步优化代码。

来自:图灵社区